Object Oriented Programming through C++

UNIT-4

Handling Data Files (Sequential and Random), Opening and

Closing of Files

Introduction:

Data files are an essential part of many software applications as they allow for the storage and
retrieval of data. In this topic, we will discuss handling data files, specifically sequential and

random access files, and the process of opening and closing files.

Sequential Access Files:

1. _Sequential access files store data records one after another in a linear fashion. To read
or write data in a sequential file, you need to start at the beginning and go through the
records sequentially until you reach the desired position.

e Opening a Sequential File:

e To open a sequential file for writing, use the file open mode "w" or "a" (for
appending).
e To open a sequential file for reading, use the file open mode "r".
e Writing to a Sequential File:
e Open the file in write mode using the appropriate file open mode.
e Use the file write operations (e.g., fwrite) to write data to the file.
e Close the file after writing.
e Reading from a Sequential File:
e Open the file in read mode using the appropriate file open mode.

e Use the file read operations (e.g., fread) to read data from the file.



e C(lose the file after reading.

Random Access Files:

2. Random access files allow for direct access to any record in the file. Each record has a
unique identifier or key that allows for random retrieval of specific records without
traversing through the entire file.

e Opening a Random Access File:

e To open a random access file, use the file open mode "r+", "w+", or "a+".
e The "r+" mode allows both reading and writing, while "w+" and "a+" modes
create a new file if it doesn't exist.

e Writing to a Random Access File:

e Open the file in write or append mode using the appropriate file open mode.
e Use file positioning functions (e.g., fseek) to move the file pointer to the
desired record.
e Use the file write operations (e.g., fwrite) to write data to the file.
® Close the file after writing.
e Reading from a Random Access File:
e Open the file in read mode using the appropriate file open mode.
e Use file positioning functions (e.g., fseek) to move the file pointer to the
desired record.
e Use the file read operations (e.g., fread) to read data from the file.
e C(lose the file after reading.
3. Opening and Closing Files:
e Opening a file:
e Specify the file path and name, and the desired file open mode.
e Check if the file was opened successfully to ensure proper error
handling.

e Closing a file:



e After reading or writing data to a file, it is essential to close the file.

e C(Closing a file frees system resources and ensures data integrity.

Handling data files involves understanding sequential and random access files and knowing

how to open and close files correctly. Sequential access files are read or written in a linear

fashion, while random access files allow direct access to specific records. Opening and

closing files properly is crucial for efficient data handling and resource management in

software applications.

Generic Programming Using Templates - Need & Importance of

Templates, Function Template and Class Template

Introduction:

Generic programming using templates is a powerful feature in programming languages that
allows the creation of reusable code for different data types. Templates enable the writing of
generic algorithms and data structures that can work with various types without the need for

duplication or code modification.

1. Need and Importance of Templates:

e Code Reusability: Templates allow developers to write code once and use it
with different data types, avoiding code duplication.

o Type Safety: Templates provide type checking at compile-time, ensuring that
operations are performed on appropriate data types.

e Increased Productivity: By using templates, developers can focus on writing
generic algorithms or data structures, leading to more efficient and productive
coding.

2. Function Templates:

e Function templates define generic functions that can work with multiple data

types.



e Syntax: T> returnType (parameters) { // Code

implementation }

e T is a placeholder representing the generic data type.

e Example:

template<typename T> T maximum(T a, T b) { return (a>b) ?a : b;

3. Class Templates:
e C(lass templates allow the creation of generic classes that can work with
different data types.

e Syntax:
< T> { // Class definition };

e T is a placeholder representing the generic data type.

e Example:

: T data[SIZE]; int top; : // Member function declarations and|

definitions };

4. Template Specialization:
e Template specialization allows defining specific implementations for certain
data types.
e Specializations can be used to handle specific cases differently or optimize
performance.

e Syntax:

template< returnType >(parameters) { // Specialized implementation

e Example:

maximum< a>b)?a:b;}
' 5§




Templates in generic programming provide a flexible and efficient way to write reusable

code that can work with multiple data types. Function templates allow generic functions,

while class templates enable the creation of generic classes. Template specialization allows

customization for specific data tvpes, enhancing the versatility of generic programming.

Exception Handling — Need of Exception Handling, Throw, Try,

Catch Block

Introduction:

Exception handling is a mechanism in programming that deals with exceptional or erroneous
situations during the execution of a program. It allows developers to gracefully handle errors,

recover from unexpected conditions, and ensure the stability and reliability of the software.

1. Need of Exception Handling:
e _Error Handling: Exception handling provides a structured approach to handle
errors and exceptional conditions that may occur during program execution.
e Program Flow Control: By catching and handling exceptions, developers can
control the flow of the program and take appropriate actions.
e Robustness: Exception handling enhances the robustness of the software by
preventing crashes or unexpected termination due to unhandled errors.
2. Throw Statement:

e The throw statement is used to raise an exception explicitly.

e Syntax:
® arduino

® Copy code
® throw

The exceptionObject can be of any data type, including built-in types or
custom-defined exception classes.

3. Try-Catch Block:



e The try-catch block is used to catch and handle exceptions.

e Syntax:

{ // Code that may throw an exception } (exceptionTypel ex1) { // Code to handle

exceptionTypel } (exceptionType2 ex2) { // Code to handle exceptionTy

Code to handle any other exception }

e The try block encloses the code that may throw an exception.

e The catch blocks specify the exception types to catch and the corresponding
code to handle those exceptions.

e The ellipsis (...) catch block is used as a catch-all for any other unhandled
exceptions.

4. Exception Class Hierarchy:

e Exception handling often involves defining custom exception classes to
represent specific types of errors.

e Custom exception classes can be derived from the standard exception class or
its derived classes, like runtime_error or logic_error.

5. Handling Exceptions:

e In the catch block, various actions can be taken to handle exceptions, such as
displaying error messages, logging, or performing specific recovery
operations.

e The catch block can also rethrow the exception using the throw statement to

propagate it to an outer level of exception handling

Exception handling is a crucial aspect of software development, providing a structured way

to handle errors and exceptional conditions. The throw statement raises exceptions, and the

try-catch block catches and handles them appropriately. Exception handling enhances

program stability, error recovery, and overall software robustness.




